Metallorganische Verbindungen der Lanthanoide, 73^[1]

Synthese und Struktur neuer Monocyclooctatetra
enyl-Komplexe von Yttrium, Terbium und Lutetium *

Herbert Schumann**, Jörn Winterfeld*, Randolf D. Köhn*, Lothar Esser*, Junquan Sun* und Andreas Dietrich* 1+1

Institut für Anorganische und Analytische Chemie der Technischen Universität^a, Straße des 17. Juni 135, W-1000 Berlin 12

Department of Polymer Science and Engineering, Zhejiang University^b, Hangzhou, 310027, China

Eingegangen am 15. Oktober 1992

Key Words: Cyclopentadienyl complexes / Cyclooctatetraenyl complexes / Yttrium compounds / Terbium compounds / Lutetium compounds / Lanthanoides, organo-, alkoxides

Organometallic Compounds of the Lanthanoids, 73^[1]. – Synthesis and Structure of New Monocyclooctatetraenyl Complexes of Yttrium, Terbium, and Lutetium

 $[(C_8H_8)Ln(\mu-Cl)(THF)]_2$ (Ln = Y, Lu) react with NaOR (R = Ph, C_6H_3Me_2-2,6) to give the dinuclear cyclooctatetraenyl rare earth alkoxides $[(C_8H_8)Ln(\mu-OR)(THF)]_2$ [R = Ph, Ln = Y (1a), Lu (1b); R = C_6H_3Me_2-2,6, Ln = Y (2a), Lu (2b)]. The reactions of $[(C_8H_8)Ln(\mu-Cl)(THF)]_2$ with LiOC(*t*Bu)₃, NaOSiPh₃, and NaC₅H₃tBu₂ result in the formation of $(C_8H_8)LnOC(tBu)_3(THF)$

 $[Ln = Y (\textbf{3a}), Lu (\textbf{3b})], (C_{\theta}H_{\theta})LnOSiPh_3(THF) [Ln = Y (\textbf{4a}), Lu (\textbf{4b})], and (C_{\theta}H_{\theta})Tb(C_5H_3tBu_2) (\textbf{5}), respectively. Treatment of (C_{\theta}H_{\theta})Y(C_5Me_5) with acetylacetone yields (C_5Me_5)Y(acac)_2 (\textbf{6}). The ¹H- and ¹³C-NMR and mass spectra of the new compounds as well as the X-ray crystal structures of$ **1 a**and**5**are discussed.

Sucht man nach Cyclooctatetraenyl-Komplexen der Lanthanoide in der Oxidationsstufe Ln³⁺, so findet man neben den 1970 von Streitwieser^[2] beschriebenen Sandwich-Anionen $[Ln(C_8H_8)_2]^{-[2-6]}$, den gemischten Neutralkomplexen $(C_8H_8)Ln(C_5H_4R)$ mit unsubstituierten^[7,8] und substituierten Cyclopentadienylliganden^[8-13] und den zur Synthese dieser Verbindungen benötigten Cyclooctatetraenyllanthanoidhalogeniden^[3,6,14-16] in der Literatur lediglich noch die Halbsandwich-Komplexe $(C_8H_8)Ce(\mu-OC_3H_7)_2AlEt_2^{[17]}$, (C_8H_8) - $Lu(CH_2SiMe_3)(THF)_2^{[14]}$ und $(C_8H_8)Ln(C_6H_4CH_2NMe_2-$ 2)(THF) (Ln = Er, Lu)^[14,18]. Das ist zum einen erstaunlich, weil diese Cyclooctatetraenyl-Komplexe einfach darzustellen und leicht zu untersuchen sind, zum anderen aber auch bedauerlich, da der große und "flache" Cyclooctatetraenyl-Ligand viel zur koordinativen Absättigung der Lanthanoide beitragen kann. Solche Organolanthanoide sollten flüchtiger sein als die bisher überwiegend untersuchten Cyclopentadienyl-Komplexe, was sie für Anwendungen als Dotierungsquellen interessant macht.

Um mehr über die Koordinationsverhältnisse und die Reaktivität solcher thermisch erstaunlich hoch belastbaren Cyclooctatetraenyl-Lanthanoid-Halbsandwich-Komplexe zu erfahren, haben wir einige Alkoxy- und Triphenylsiloxy-Derivate von Yttrium und Lutetium sowie einen sterisch anspruchsvoll substituierten Terbium-Komplex synthetisiert und die Molekülstruktur von zwei Verbindungen aufgeklärt.

Synthese und Eigenschaften

Bis[µ-chloro(cyclooctatetraenyl)(tetrahydrofuran)yttrium] und die entsprechende Lutetium-Verbindung reagieren mit Phenoxy- und 2,6-Dimethylphenoxynatrium in THF bei Raumtemperatur zu den entsprechenden dimeren Cyclooctatetraenyl-Aryloxy-Komplexen von Yttrium (1a, 2a) und Lutetium (1b, 2b), während mit Tri-*tert*-butylmethoxylithium in Toluol und mit Natrium-triphenylsilanolat in THF die entsprechenden einkernigen Cyclooctatetraenyl-Alkoxybzw. -Siloxy-Komplexe 3a und 3b bzw. 4a und 4b erhalten werden.

$$\begin{bmatrix} (C_{B}H_{B})Ln(\mu-CI)(THF)]_{2} + 2 \text{ NoOR} & \xrightarrow{-2 \text{ NaCI}} \\ & \begin{bmatrix} (C_{B}H_{B})Ln(\mu-OR)(THF)]_{2} \\ & 1, 2 \\ \end{bmatrix}$$

$$\begin{bmatrix} (C_{B}H_{B})Ln(\mu-CI)(THF)]_{2} + 2 \text{ LiOC}^{t}Bu_{3} & \xrightarrow{-2 \text{ LiCI}} \\ & 2 (C_{B}H_{B})Ln(OC^{t}Bu_{3})(THF) \\ & 3 \\ \end{bmatrix}$$

$$\begin{bmatrix} (C_{B}H_{B})Ln(\mu-CI)(THF)]_{2} + 2 \text{ NaOSiPh}_{3} & \xrightarrow{-2 \text{ NaCI}} \\ & 2 (C_{B}H_{B})Ln(OSiPh_{3})(THF) \\ & 2 (C_{B}H_{B})Ln(OSiPh_{3})(THF) \\ & 4 \\ \hline \\ Ln & OPh & OC_{6}H_{3}Me_{2}-2,6 & OC^{t}Bu_{3} & OSiPh_{3} \\ \end{bmatrix}$$

·					_
Y	1a	2a	3a	4a	
Lu	1ь	2b	3ъ	4Ь	

^[*] Derzeitige Adresse: Hoechst Celanese Corporation, Bucks AL 36512, USA.

Die Komplexe 1a, b, 2a, b und 4a, b werden als farblose Kristalle erhalten. Beim Trocknen im Vakuum verlieren sie ihren Glanz, und ihre C,H-Analysen entsprechen den jeweiligen Komplexen ohne im Kristall eingebautes THF. 1a, b und 2a, b zersetzen sich erst oberhalb 300°C. Sie lösen sich im Gegensatz zu 3a, b und 4a, b nur in polaren Lösemitteln wie THF. Alle acht Verbindungen werden von Luftsauerstoff und Wasser schnell angegriffen. Die ¹H-NMR-Spektren zeigen die erwarteten Singuletts für die n⁸-gebundenen Cyclooctatetraenyl-Liganden sowie Multipletts für die Phenyl- und THF-Protonen und weitere Singuletts für die Methyl- bzw. tert-Butylgruppen in 2a, b und 3a, b. Die ¹³C-NMR-Signale der C₈H₈-Liganden zeigen bei den Yttrium-Derivaten 1a - 4a eine Kopplung ¹J(⁸⁹Y, ¹³C), die um 2.5 Hz liegt. In den Massenspektren von 1a, b und 2a, b weist das [M - 2 THF]-Fragment $[(C_8H_8)\text{LnOR}]_2^+$ klar auf das Vorliegen dimerer Moleküleinheiten hin. Die EI-Massenspektren von 3a, b und 4a, b zeigen dagegen nur Fragmente für die monomeren Formeleinheiten.

Bis[µ-chloro(cyclooctatetraenyl)(tetrahydrofuran)terbium] reagiert mit Natrium-di-*tert*-butylcyclopentadienid in THF unter Bildung von gelbem (Cyclooctatetraenyl)(1,3-di*tert*-butylcyclopentadienyl)terbium(III) (5).

$$[(C_8H_8)Tb(\mu-CI)(THF)]_2 + 2 \operatorname{NoC}_5H_3^{tBu}_2 \xrightarrow{-2 \operatorname{NoCI}} 2 (C_8H_8)Tb(C_5H_3^{tBu}_2)$$

Das in polaren Lösemitteln wie Diethylether oder THF und in aromatischen Kohlenwasserstoffen lösliche, luft- und feuchtigkeitsempfindliche 5 zeigt in den NMR-Spektren den großen Einfluß des paramagnetischen Tb³⁺ auf die Wasserstoff- und Kohlenstoff-Atome seiner koordinierten Liganden. So liegen die Signale für die Protonen im ¹H-NMR-Spektrum zwischen $\delta = -207$ und +184, während der Signalbereich der Kohlenstoff-Atome im ¹³C-NMR-Spektrum zwischen $\delta = -1065$ und +25 liegt. Die Zuordnung der Signale erfolgte durch Integration und Linienbreite.

Läßt man Acetylaceton und (Cyclooctatetraenyl)(pentamethylcyclopentadienyl)yttrium im Molverhältnis 1:1 in *n*-Hexan miteinander reagieren, so wird nicht, wie erwartet, Pentamethylcyclopentadien und $(C_8H_8)Y(acac)$ gebildet. Man findet neben unumgesetztem $(C_8H_8)Y(C_5Me_5)$ und freiem Cyclooctatetraen Bis(acetylacetonato)(cyclooctatetraenyl)yttrium(III) (6), das als weißer Feststoff isoliert wird. Beim Einsatz der doppelten Menge Acetylaceton entsteht 6 mit 50% Ausbeute.

$$(C_8H_8)Y(C_5Me_5) + 2 CH_3C(0)CH_2C(0)CH_3 \xrightarrow{-C_8H_8} (C_5Me_5)Y(acac)_2$$

- H_2 6

Röntgenstrukturanalysen

Von 1a und 5 wurden Einkristall-Röntgenstrukturanalysen durchgeführt. Abb. 1 und 2 zeigen ORTEP-Projektionen^[19] der Moleküle mit der Numerierung der Atome. Die Tab. 1-4 enthalten Atomkoordinaten und Kristalldaten.

Abb. 1. ORTEP-Projektion^[19] von 1a. Schwingungs-Ellipsoide sind mit 50% Aufenthaltswahrscheinlichkeit dargestellt; ausgewählte Bindungsabstände [pm] und Winkel [°] mit Standardabweichungen in Klammern: Y1 ··· Y2 368.9(1), Y1 – O1 236.0(5), Y1 – O2 229.4(4), Y1 – O3 241.2(4), Y2 – O1 225.0(5), Y2 – O2 225.9(4), Y2 – O4 236.9(5), O1 – C17 135.3(7), O2 – C23 136.4(7), Y1 – (C₈H₈)1 177(2), Y2 – (C₈H₈)2 185(2); O2 – Y1 – O1 70.5(2), O3 – Y1 – O1 83.6(2), O3 – Y1 – O2 83.6(2), Y2 – O1 – Y1 106.3(2), O2 – Y2 – O1 73.2(2), O4 – Y2 – O1 85.5(2), O4 – Y2 – O2 83.6(2), Y2 – O2 – Y1 108.2(2)

Abb. 2. ORTEP-Projektion^[19] von 5. Schwingungs-Ellipsoide sind mit 50% Aufenthaltswahrscheinlichkeit dargestellt; ausgewählte Bindungsabstände [pm] mit Standardabweichungen in Klammern: Tb-C1 267.9(4), Tb-C2 266.5(4), Tb-C3 265.2(3), Tb-C4 262.7(4), Tb-C5 264.3(4), Tb-C14 254.1(5), Tb-C15 253.7(5), Tb-C16 254.3(6), Tb-C17 255.2(6), Tb-C18 253.3(6), Tb-C19 252.9(6), Tb-C20 253.5(7), Tb-C21 252.4(6), C1-C6 151.9(5), C3-C10 153.8(6), Tb-(C₈H₈) 176(1), Tb-(C₅H₃tBu₂) 236(1)

Der Yttriumkomplex 1a kristallisiert als Dimer. Jedes Yttrium-Atom ist annähernd tetraedrisch durch einen planaren C₈H₈-Ring, ein THF-Molekül und zwei verbrückende Phenolat-Liganden umgeben. Jede dimere $(C_8H_8)Y(OPh)$ -Einheit besitzt ein zusätzliches THF-Molekül im Kristall ohne signifikante Kontakte zwischen Sauerstoff und Yttrium. Das wichtigste Strukturmerkmal ist das fast ebene Y2O2-Parallelogramm, das man auch in anderen Cyclopentadienylyttrium-Komplexen findet, wie z.B. in [(Me- $C_5H_4_2Y(\mu-OCH = CH_2)_2^{[20]}$, in $[(C_5H_5)_2Y(\mu-OH)]_2(PhC =$ CPh)^[21], in $[O(CH_2CH_2C_5H_4)_2Y(\mu-OH)]_2^{[22]}$ oder im Zweikernkomplex $[O(CH_2CH_2C_5H_4)_2Y(\mu-N_2C_3Me_2)(\mu-OH)Y (C_5H_4CH_2CH_2)_2O]^{[23]}$. Die Winkel O1 – Y1 – O2 und O1 – Y2 - O2 betragen 70.5(2) und 73.2(2)°. Die anderen O - Y -O-Winkel, O2-Y2-O4 und O1-Y1-O3, des Komplexes 1a weichen klar vom idealen Tetraederwinkel mit jeweils 83.6(2)° ab. Bemerkenswert ist außerdem, daß sich Y2 näher an O1 [225.0(5) pm] und O2 [225.9(4) pm] befindet als Y1 [236.0(5) und 229.4(4) pm]. Diese ungleiche Anordnung der Phenolat-Liganden und die daraus resultierende ungleiche Ladungsverteilung wird durch unterschiedliche Abstände $Y - (C_8H_8)_{Zentrum}$ [177(2) pm für $Y1 - (C_8H_8)$ und 185(2) pm für $Y2-(C_8H_8)$] wieder ausgeglichen. Die C_8H_8 -Ringe stehen nicht senkrecht auf der Y2O2-Ebene, sondern bilden einen Interplanarwinkel von $53.7(1)^{\circ}$ für (C₈H₈)1 (C1-C8) bzw. $69.2(1)^{\circ}$ für (C₈H₈)2 (C9-C16). Die Y1-Y2-Entfernung in 1a ist mit 368.9(1) pm im Vergleich zu Y-Y'-Kontakten anderer Organoyttrium-Verbindungen relativ lang. So beträgt der Y-Y'-Abstand in $[(C_5H_5)_2Y(\mu-OH)]_2(Ph C \equiv CPh$) 359.5 pm^[21], in [(C₅H₅)₂Y(µ-Me)]₂ 359.9 pm^[24], in $[(C_{5}H_{5})_{2}Y(\mu-\eta^{2}-HC = NtBu)]_{2}$ 360.7 pm^[25], in $[(C_{5}H_{5})_{2}Y(\mu-\eta^{2}-HC = NtBu)]_{2}$ N = CHtBu]₂ 361.7 pm^[26], in [O(CH₂CH₂C₅H₄)₂Y(µ-OH)] $_{2}^{[22]}$ und in [O(CH₂CH₂C₅H₄) $_{2}$ Y(μ -N₂C₃Me₂)(μ -OH)- $Y(C_5H_4CH_2CH_2)_2O$] 364.6 pm^[22,23], in [(MeC₅H₄)₂Y(µ-H)(THF)]₂ 366.4 pm^[27] oder in [(MeC₅H₄)₂Y(μ -OCH = CH₂)]₂ 366.7 pm^[20]. Die Interplanarwinkel zwischen den Phenylringen C17-C22 und C23-C28 der Phenolat-Liganden und dem Y₂O₂-Parallelogramm betragen 53.3(2) und 44.4(2)°.

Im Gegensatz zu 1a liegt 5 im Kristall monomer vor. Der kürzeste intramolekulare Tb…Tb-Abstand im Gitter beträgt 662.0(1) pm. Das Tb³⁺-Ion ist η^8 an den Cyclooctatetraenyl-Ring und η^5 an den disubstituierten Cyclopentadienyl-Ring gebunden, wie Yttrium in (C₈H₈)Y(C₅H₄Me)^[13] oder Lutetium in den Komplexen $(C_8H_8)Lu(C_5H_5)^{[8]}$, $(C_8H_8)Lu$ - $(C_5Me_5)^{[12]}$ und $(C_8H_8)Lu[C_5(CH_2Ph)_5]^{[11]}$. Terbium liegt fast symmetrisch zwischen den Zentren der beiden planaren Ringe mit einem $(C_8H_8)Tb(Cp)$ -Winkel von 177.8°. Die C-C-Abstände im Cyclopentadienyl-Ring betragen im Mittel 141.5(3) pm, im Cyclooctatetraenyl-Ring 139.9(5) pm, was den Verhältnissen in analogen Verbindungen entspricht^[11,12]. Der mittlere Tb – $C_{(COT)}$ -Abstand liegt bei 253.7 pm und ist damit 11.6 pm kürzer als die mittlere Tb $-C_{Cp}$ -Entfernung. Diese Bindungsabstände sind konsistent mit vergleichbaren Lutetium-Verbindungen wie (C₈H₈)Lu- $(C_5Me_5)^{[12]}$ und $(C_8H_8)Lu[C_5(CH_2Ph)_5]^{[11]}$, wenn man den Unterschied von 6.3 pm der Ionenradien von Lu³⁺ und Tb³⁺ berücksichtigt^[28]. Beide tert-Butylgruppen sind aus der Cyclopentadienyl-Ringebene vom Terbium weggebogen. Die Winkel der C-C-Linie zur Cyclopentadienyl-Ringebene betragen 6.1(4) bzw. $7.0(4)^{\circ}$.

Wir danken dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft und dem Bundesminister für Bildung und Wissenschaft (Graduiertenkolleg "Synthese und Strukturaufklärung niedermolekularer Verbindungen") für finanzielle Unterstützung dieser Arbeit.

Experimenteller Teil

Sämtliche Arbeiten wurden unter trockenem, O2-freiem Argon mittels Schlenk- und Vakuum-Techniken durchgeführt. Die Lösemittel wurden mit Na/K getrocknet und unter Argon abdestilliert, um sie dann direkt zu verwenden. $[(C_8H_8)Y(\mu-Cl)(THF)]_2^{[14]}$, $[(C_8H_8)Tb(\mu-Cl)(THF)]_2^{[12]}, [(C_8H_8)Lu(\mu-Cl)(THF)]_2^{[14]},$ $(C_8H_8)Y(C_5Me_5)^{[12]}$, NaOC₆H₃Me₂^[29], LiOCtBu₃^[30] und Na-C₅H₃tBu₂^[31] wurden nach Literaturmethoden hergestellt. Na-OSiPh₃ erhielten wir aus Ph₃SiOH und NaH in THF. - Die Schmelz- bzw. Zersetzungspunktbestimmungen und NMR-Messungen wurden in unter Vakuum zugeschmolzenen Kapillaren bzw. NMR-Röhrchen durchgeführt. – ¹H- und ¹³C-NMR: Bruker WH 270 (270 bzw. 67.89 MHz), in C_6D_6 , $[D_8]$ Toluol oder $[D_8]$ THF, gegen TMS bei 294 K. - MS: Varian MAT 311A (Elektronenstoßionisation); es sind nur charakteristische Fragment-Ionen angegeben. - C,H-Analysen: Perkin-Elmer-240C-CHN-Elemental-Analyzer.

Di-µ-phenoxy-bis[(cyclooctatetraenyl)(tetrahydrofuran)yttrium-(III) / (1a): Zu einer Suspension von 0.72 g (1.2 mmol) $[(C_8H_8)Y(\mu -$ Cl)(THF)]₂ in 50 ml THF werden bei Raumtemp, unter Rühren portionsweise 0.27 g (2.3 mmol) NaOPh gegeben. Es wird 24 h gerührt, dann die gelbe Suspension über eine dünne Schicht Celit filtriert. Das Filtrat wird i. Vak. auf 20 ml eingeengt und zur Kristallisation bei -30° C aufbewahrt. Ausb. 0.45 g (50%) farblose. quaderförmige Kristalle, Schmp. 325°C (Zers.). – ¹H-NMR $([D_8]THF): \delta = 1.69 \text{ (m, 4H, THF)}, 3.53 \text{ (m, 4H, THF)}, 5.92 \text{ (s,}$ 8H, C₈H₈), 6.50 (m, 2H, o-Phenyl-H), 6.82 (m, 1H, p-Phenyl-H), 7.16 (m, 2H, *m*-Phenyl-H). - ¹³C-NMR ([D₈]THF): $\delta = 25.2$ (THF), 67.3 (THF), 94.0 [d, C_8H_8 , ${}^{1}J({}^{89}Y, {}^{13}C) = 2.4$ Hz], 119.8 (o-Phenyl-C), 120.1 (p-Phenyl-C), 129.3 (m-Phenyl-C), 160.9 (quart. Phenyl-C). – MS (70 eV), m/z (%): 572 (21.6) [M – 2 THF]⁺, 286 $(55.4) [(C_8H_8)Y(OPh)]^+, 193 (100) [(C_8H_8)Y]^+, 104 (35.5) [C_8H_8]^+,$ 94 (11.8) [PhOH]⁺, 78 (27.3) [C₆H₆]⁺.

 $C_{36}H_{42}O_4Y_2\ (716.5)$ Ber. C 60.34 H 5.91 Gef. C 60.37 H 6.11

Di-µ-phenoxy-bis[(cyclooctatetraenyl) (tetrahydrofuran) lutetium(III)] (1b): Analog 1a aus 0.70 g (0.9 mmol) [(C₈H₈)Lu(µ-Cl)(THF)]₂ und 0.20 g (1.7 mmol) NaOPh. Ausb. 0.30 g (36%) farblose, quaderförmige Kristalle, Schmp. 368 °C (Zers.). – ¹H-NMR ([D₈]THF): $\delta = 1.70$ (m, 4H, THF), 3.54 (m, 4H, THF), 5.85 (s, 8H, C₈H₈), 6.54 (m, 2H, o-Phenyl-H), 6.84 (m, 1H, p-Phenyl-H), 7.18 (m, 2H, *m*-Phenyl-H). – ¹³C-NMR ([D₈]THF): $\delta = 26.5$ (THF), 68.2 (THF), 92.3 (C₈H₈), 120.3 (p-Phenyl-C), 120.4 (o-Phenyl-C), 129.1 (*m*-Phenyl-C), 161.3 (quart. Phenyl-C). – MS (70 eV), *m/z* (%): 744 (34.3) [M – 2 THF]⁺, 372 (60.2) [(C₈H₈)Lu(OPh)]⁺, 779 (53.3) [(C₈H₈)Lu]⁺, 104 (100) [C₈H₈]⁺, 94 (42.5) [PhOH]⁺, 78 (91.2) [C₆H₆]⁺.

C₃₆H₄₂Lu₂O₄ (888.7) Ber. C 48.66 H 4.76 Gef. C 49.15 H 4.81

Bis(μ -2,6-dimethylphenoxy)-bis[(cyclooctatetraenyl)(tetrahydrofuran)yttrium(III)] (2a): Analog 1a aus 0.48 g (0.8 mmol) [(C₈H₈)Y(μ -Cl)(THF)]₂ und 0.27 g (1.5 mmol) NaOC₆H₃Me₂-(THF)_{0.5}. Ausb. 0.33 g (54%) farblose, nadelförmige Kristalle, Schmp. 392°C (Zers.). - ¹H-NMR ([D₈]THF): δ = 1.68 (m, 4H, THF), 1.94 (s, 3 H, $C_6H_3Me_2$), 2.31 (s, 3 H, $C_6H_3Me_2$), 3.53 (m, 4 H, THF), 5.80 (s, 8 H, C_8H_8), 6.32 (m, 1 H, *p*-Phenyl-H), 6.86 (m, 1 H, *m*-Phenyl-H), 6.91 (m, 1 H, *m*-Phenyl-H). – ¹³C-NMR ([D₈]THF): $\delta = 19.9$ und 20.5 ($C_6H_3Me_2$), 26.9 (THF), 68.5 (THF), 93.7 [d, C_8H_8 , ¹/(⁸⁹Y, ¹³C = 2.5 Hz)], 118 (*p*-Phenyl-C), 127.7 und 128.1 (*o*-Phenyl-C), 128.0 und 128.6 (*m*-Phenyl-C), 160.1 (quart. Phenyl-C). – MS (70 eV), *m/z* (%): 628 (87.3) [M - 2 THF]⁺, 507 (31.2) [M - 2 THF – OC₆H₃Me₂]⁺, 314 (100) [(C_8H_8)YOC₆H₃Me₂]⁺, 122 (5.5) [HOC₆H₃Me₂]⁺, 104 (5.5) [C₈H₈]⁺.

C40H50O4Y2 (772.7) Ber. C 62.18 H 6.52 Gef. C 61.89 H 6.37

Bis (μ -2,6-dimethylphenoxy)-bis[(cyclooctatetraenyl) (tetrahydrofuran)lutetium(III)] (2b): Analog 1a aus 0.46 g (0.6 mmol) [(C₈H₈)Lu(μ -Cl)(THF)]₂ und 0.22 g (1.2 mmol) NaOC₆H₃Me₂-(THF)_{0.5}. Ausb. 0.25 g (44%) farblose Nadeln, Schmp. 390°C (Zers.). – ¹H-NMR ([D₈]THF): δ = 1.67 (m, 4H, THF), 2.12 (s, 3H, C₆H₃Me₂), 2.31 (s, 3H, C₆H₃Me₂), 3.52 (m, 4H, THF), 5.71 (s, 8H, C₈H₈), 6.53 (m, 1H, *p*-Phenyl-H), 6.84 (m, 1H, *m*-Phenyl-H), 6.89 (m, 1H, *m*-Phenyl-H). – ¹³C-NMR ([D₈]THF): δ = 20.0 und 20.6 (C₆H₃Me₂), 26.8 (THF), 68.6 (THF), 93.7 (C₈H₈), 118.8 (*p*-Phenyl-C), 128.1 und 128.7 (*o*-Phenyl-C), 128.3 und 128.9 (*m*-Phenyl-C), 160.4 (quart. Phenyl-C). – MS (70 eV), *m*/*z* (%): 800 (60.6) [M – 2 THF]⁺, 679 (49.8) [M – 2 THF – OC₆H₃Me₂]⁺, 104 (85.7) [(C₈H₈)LuOC₆H₃Me₂]⁺, 122 (62.6) [HOC₆H₃Me₂]⁺, 104 (45.2) [C₈H₈]⁺.

C40H50Lu2O4 (944.8) Ber. C 50.85 H 5.33 Gef. C 50.35 H 5.22

(Cyclooctatetraenyl)(tetrahydrofuran)(tri-tert-butylmethoxy)yttrium(III) (3a): Zu einer Suspension von 0.48 g (0.8 mmol) $[(C_8H_8)Y(\mu-Cl)(THF)]_2$ in 50 ml Toluol werden bei Raumtemp. unter Rühren langsam 0.33 g (1.6 mmol) LiOCtBu₃ gegeben. Dann läßt man weitere 12 h rühren. Nach Entfernen des Lösemittels i. Vak. wird der zurückgebliebene Feststoff mit 30 ml n-Hexan gewaschen und anschließend mit 50 ml Benzol extrahiert. Filtration über Celit liefert ein farbloses Filtrat, das i.Vak. vom Lösemittel befreit wird. Ausb. 0.18 g (23%) farbloser Feststoff, Schmp. 164°C (Zers.). $- {}^{1}$ H-NMR (C₆D₆): $\delta = 1.08$ (m, 4H, THF), 1.11 (s, 27H, CH₃), 3.05 (m, 4H, THF), 5.58 (s, 8H, C_8H_8). - ¹³C-NMR (C_6D_6): $\delta = 25.1 [C(CMe_3)_3], 33.2 [C(CMe_3)_3], 45.3 (THF), 70.5 (THF),$ 91.2 [C(CMe₃)₃], 94.3 [d, C₈H₈, ¹J(⁸⁹Y, ¹³C) = 2.6 Hz]. - MS (70 eV), m/z (%): 392 (8.2) [M - THF]⁺, 335 (39.8) [M - THF $tBu]^+$, 193 (100) [(C₈H₈)Y]⁺, 104 (5.3) [C₈H₈]⁺, 57 (85.6) [tBu]⁺. C₂₅H₄₃O₂Y (464.5) Ber. C 64.65 H 9.33 Gef. C 64.53 H 9.29

(Cyclooctatetraenyl) (tetrahydrofuran) (tri-tert-butylmethoxy) lu $tetium(III) (3b): Analog 3a aus 0.78 g (0.9 mmol) [(C_8H_8)Lu(µ-$ Cl)(THF)]₂ und 0.35 g (1.7 mmol) LiOCtBu₃. Ausb. 0.23 g (24%) $weißer Feststoff, Schmp. 159°C (Zers.). – ¹H-NMR (C₆D₆): <math>\delta =$ 1.06 (m, 4H, THF), 1.12 (s, 27H, CH₃), 3.04 (m, 4H, THF), 6.55 (s, 8H, C_8H_8). – ¹³C-NMR (C₆D₆): $\delta =$ 25.0 [C(CMe₃)₃], 33.1 [C(CMe₃)₃], 45.4 (THF), 71.3 (THF), 91.6 [C(CMe₃)₃], 93.4 (C₈H₈). – MS (70 eV), m/z (%): 478 (2.3) [M – THF]⁺, 421 (7.8) [M – THF – tBu]⁺, 279 (13.4) [(C₈H₈)Lu]⁺, 104 (5.6) [C₈H₈]⁺, 57 (100) [tBu]⁺.

C25H43LuO2 (550.6) Ber. C 54.54 H 7.87 Gef. C 54.48 H 7.83

(Cyclooctatetraenyl) (tetrahydrofuran) (triphenylsiloxy) yttrium-(III) (4a): Zu einer Suspension aus 0.48 g (0.8 mmol) $[(C_8H_8)Y(\mu-Cl)(THF)]_2$ in 40 ml THF gibt man portionenweise unter Rühren bei Raumtemp. 0.48 g (1.6 mmol) NaOSiPh₃ und läßt 24 h bei Raumtemp. rühren. Dann wird das Lösemittel i. Vak. entfernt und der zurückbleibende Feststoff mit 30 ml Toluol 20 min bei 45°C extrahiert. Filtration über wenig Celit liefert ein hellgelbes Filtrat, das man zur Kristallisation bei -78°C aufbewahrt. Ausb. 0.38 g (44%) farbloser mikrokristalliner Feststoff, Schmp. 308°C (Zers.). - ¹H-NMR ([D₈]THF): δ = 1.69 (m, 4H, THF), 3.52 (m, 4H, THF), 6.25 (s, 8H, C₈H₈), 7.20-7.45 (m, 15H, Ph). - ¹³C-NMR ([D₈]THF): δ = 26.5 (THF), 68.3 (THF), 93.4 [d, C₈H₈, ¹J(⁸⁹Y, ¹³C) = 2.0 Hz], 127.7 (*o*-Phenyl-C), 129.9 (*p*-Phenyl-C), 135.8 (*m*-Phenyl-C), 141.9 (quart. Phenyl-C). - MS (70 eV), *m/z* (%): 468 (19.1) [M - THF]⁺, 391 (15.7) [M - THF - Ph]⁺, 193 (14.0) [(C₈H₈)⁺, 78 (100) [C₆H₈]⁺.

C₃₀H₃₁O₂SiY (540.6) Ber. C 66.65 H 5.78 Gef. C 66.60 H 5.71

(Cyclooctatetraenyl) (tetrahydrofuran) (triphenylsiloxy) lutetium- $(III) (4b): Analog 4a aus 0.54 g (0.7 mmol) [(C_8H_8)Lu(\mu-Cl)(THF)]_2$ und 0.42 g (1.4 mmol) NaOSiPh₃. Ausb. 0.43 g (49%) farbloser mi $krokristalliner Feststoff, Schmp. 277°C (Zers.). – ¹H-NMR ([D_8] THF): <math>\delta = 1.68$ (m, 4H, THF), 3.54 (m, 4H, THF), 6.19 (s, 8H, C_8H_8), 7.20-7.45 (m, 15H, Ph). – ¹³C-NMR ([D_8]THF): $\delta = 26.3$ (THF), 68.4 (THF), 92.2 (C_8H_8), 127.7 (o-Phenyl-C), 129.1 (p-Phenyl-C), 135.8 (m-Phenyl-C), 141.8 (quart. Phenyl-C). – MS (70 eV), m/z (%): 554 (12.5) [M – THF]⁺, 477 (6.3) [M – THF – Ph]⁺, 279 (3.9) [(C_8H_8)Lu]⁺, 104 (12.8) [C_8H_8]⁺, 78 (100) [C_6H_6]⁺.

C30H31LuO2Si (626.6) Ber. C 57.51 H 4.99 Gef. C 57.43 H 4.95

(Cyclooctatetraenyl) (1,3-di-tert-butylcyclopentadienyl) terbium-(III) (5): Zu einer Suspension von 1.14 g (1.65 mmol) [(C₈H₈)Tb(μ -Cl)(THF)]₂ in 50 ml THF werden bei Raumtemp. langsam 15 ml einer 0.19 M Lösung von NaC₅H₃tBu₂ (2.85 mmol) in THF getropft. Nach 24 h wird vom gebildeten NaCl dekantiert, die Lösung i. Vak. auf 30 ml eingeengt und zur Kristallisation bei -20 °C aufbewahrt. Ausb. 0.56 g (45%) gelbe Kristalle, Schmp. 113–114 °C. – ¹H-NMR (80 MHz, [D₈]Toluol): $\delta = -207$ ($\Delta v_{1/2} = 1330$ Hz, 1 H,

Tab. 1. Kristalldaten und Angaben zur Kristallstrukturbestimmung von 1a. Standardabweichungen sind in Klammern angegeben

Summenformel $C_{36}H_{42}O_4Y_2 \cdot C_4H_8O$; Molmasse 788.65 g/mol; Gitterkonstanten a = 945.3(3), b = 1382.3(3), c = 1397.0(4) pm, $\beta = 97.51(3)^\circ$; Zellvolumen 1809.8(9) $\cdot 10^{-30}$ m³; Z = 2; $d_{\text{ber}} = 1.45$ g/ cm³; Linearer Absorptionskoeffizient 32.5 cm⁻¹; Kristallsystem monoklin, Raumgruppe P2₁; Kristallgröße 0.47 $\times 0.29 \times 0.68$ mm³; Meßgerät Vierkreisdiffraktometer, Enraf Nonius CAD-4; Strahlung Mo- K_{α} , $\lambda = 71.069$ pm; Monochromator Graphiteinkristall; Meßtemperatur 140(5) K; Meßbereich $2\Theta_{\text{max}} = 53^\circ$; h, k, l-Grenzen $-11 \rightarrow 11, 0 \rightarrow 17, 0 \rightarrow 17$; Abtastmodus $\Theta - 2\Theta$; Zahl der unabhängigen Reflexe 3766; Zahl der beobachteten Reflexe 3342 mit $F_o \ge 4\sigma(F_o)$; max. Shift/Error (Δ/σ) 0.19; Restelektronendichte max. 0.83, min. -0.96 eÅ⁻³; Anzahl der verfeinerten Parameter 423; $R = \sum ||F_o| - |F_c||/\sum |F_o|| = 0.038, R_w = [\sum w(|F_o| - |F_c|)^2/\sum F_0^2]^{1/2} = 0.045$; Gewichtung $w = 1.326/[\sigma^2(F_o) + 0.00056 \cdot F_0^2]$

Tab. 2. Kristalldaten und Angaben zur Kristallstrukturbestimmung von 5. Standardabweichungen sind in Klammern angegeben

Summenformel C₂₁H₂₉Tb; Molmasse 440.39 g/mol; Gitterkonstanten a = 662.0(1), b = 3048.3(5), c = 985.3(2) pm, $\beta = 106.84(2)^{\circ}$; Zellvolumen 1903.0(6) $\cdot 10^{-30}$ m³; Z = 4; $d_{ber} = 1.54$ g/cm³; Linearer Absorptionskoeffizient 35.2 cm⁻¹; Kristallsystem monoklin, Raumgruppe $P_{1/n}$; Kristallgröße 0.18 × 0.25 × 0.36 mm³; Meßgerät Vierkreisdiffraktometer, Enraf Nonius CAD-4; Strahlung Mo- K_{α} , $\lambda = 71.069$ pm; Monochromator Graphiteinkristall; Meßtemperatur 140(5) K; Meßbereich $2\Theta_{max} = 53^{\circ}$; h, k, l-Grenzen $-8 \rightarrow 0$, $0 \rightarrow 38, -12 \rightarrow 12$; Abtastmodus $\omega - 2\Theta$; Zahl der unabhängigen Reflexe 3678; Zahl der beobachteten Reflexe 3258 mit $F_o \ge 4 \sigma(F_o)$; max. Shift/Error (Δ/σ) 0.003; Restelektronendichte max. 1.87, min. -1.20 eÅ⁻³; Anzahl der verfeinerten Parameter 211; R = 0.029, $R_w = 0.037$; Gewichtung $w = 4.614/[\sigma^2(F_o) + 0.000207 \cdot F_o^2]$ C₅H), 7.4 ($\Delta v_{1/2} = 240$ Hz, 18 H, CMe₃), 125 ($\Delta v_{1/2} = 1390$ Hz, 2 H, C₅H₂), 184 ($\Delta v_{1/2} = 660$ Hz, 8 H, C₈H₈). $-^{13}$ C-NMR ([D₈]Toluol): $\delta = -1065$ (C₅H), -744 und -508 (je 2 C, C₅H₂tBu₂), -550 (C₈H₈), 11 (CMe₃), 25 [C(CH₃)₃].

 $C_{21}H_{29}Tb$ (440.4) Ber. C 57.28 H 6.64 Gef. C 56.06 H 6.48

Bis(acetylacetonato)(pentamethylcyclopentadienyl)yttrium(III) (6): Zu einer Lösung von 0.66 g (2 mmol) (C₈H₈)Y(C₅Me₅) in 50 ml *n*-Hexan werden bei Raumtemp. unter Rühren langsam 0.4 g (0.4 mmol) CH₃C(O)CH₂C(O)CH₃ getropft, und anschließend wird noch 1 h gerührt. Dann wird die überstehende Lösung vom ausgefallenen weißen Feststoff dekantiert und das Produkt i. Vak. getrocknet. Ausb. 0.42 g (50%), Schmp. 190°C (Zers.). – ¹H-NMR (C₆D₆): δ = 1.73 {s, 12H, CH[C(O)CH₃]₂}, 2.14 [s, 15H, C₅(CH₃)₅], 5.19 {s, 2H, CH[C(O)CH₃]₂}. – ¹³C-NMR (C₆D₆): δ = 10.6 {CH[C(O)CH₃]₂}, 192.1 {CH[C(O)CH₃]₂}. – MS (70 eV), *m/z* (%): 422 (12.4) [M]⁺, 287 (100) [M – C₅Me₅]⁺, 269 (10.5) [M – C₅Me₅ – CO]⁺, 136 (14.2) [C₅Me₅H]⁺.

C₂₀H₂₉O₄Y (422.4) Ber. C 56.88 H 6.92 Gef. C 56.59 H 7.31

Tab. 3. Atompositionen und äquivalente isotrope Temperaturfaktoren $[Å^2]$ von 1a mit Standardabweichungen in Klammern

Atom	x/a	y/b	z/c	Beq
¥1	0.08820(6)	0 500	0 83564(4)	1 12
¥2	~0.03173(6)	0.70708/6)	0.67020(4)	1 00
01	0.1089(5)	0.70700(07	0.0/920(4/	1 54
02	-0.0906(5)	0.0000(3)	0.0100(3)	1 24
02		0.5319(3)	0.7134(3)	1.24
03	-0.0891(5)	0.5445(3)	0.93/1(3/	1 01
04	0.1492(5)	0.0303(3)	0.3990(3)	2.01
03	-0.0311(3)	0.9921(4)	0.7111(4)	2.74
C1 C2	0.3263(7)	0.4831(5)	0.9425(5)	1.75
CZ C2	0.3018(7)	0.4962(6)	0.8485(5)	1.9/
63	0.3104(7)	0.4555(5)	0.7569(5)	1.99
C4	0.2051(8)	0.3888(5)	0.7232(5)	2.31
C5	0.1046(9)	0.3330(5)	0.7639(6)	2.45
C6	0.0/20(8)	0.3193(5)	0.8590(6)	2.12
C7	0.1283(8)	0.3571(5)	0.9512(5)	2.26
C8	0.2342(7)	0.4238(5)	0.9846(5)	1.97
C9	-0.1097(8)	0.8647(5)	0.7611(5)	2.24
C10	0.0051(8)	0.8926(5)	0.7116(5)	2.00
C11	0.0400(8)	0.8773(5)	0.6175(5)	2.01
C12	-0.0256(8)	0.8268(5)	0.5343(5)	1.84
C13	-0.1512(8)	0.7713(5)	0.5130(5)	2.07
C14	-0.2621(8)	0.7431(5)	0.5620(5)	1.93
C15	-0.2981(7)	0.7582(5)	0.6581(5)	2.15
C16	-0.2322(8)	0.8104(5)	0.7389(5)	2.15
C17	0.1972(6)	0.7177(5)	0.8837(4)	1.38
C18	0.1833(7)	0.7100(6)	0.9812(5)	1.90
C19	0.2800(8)	0.7565(5)	1.0500(5)	2.12
C20	0.3906(8)	0.8106(5)	1.0233(5)	2.26
C21	0.4040(9)	0.8201(6)	0.9262(6)	2.81
C22	0.3056(7)	0.7745(5)	0.8564(5)	2.00
C23	-0.1901(6)	0.4931(4)	0.6762(4)	1.14
C24	-0.2317(7)	0.4888(5)	0.5764(5)	1.62
C25	-0.3453(7)	0.4295(5)	0.5387(5)	1.88
C26	-0.4153(7)	0.3752(5)	0.5989(5)	1.97
C27	-0.3741(7)	0.3785(5)	0.6988(5)	1.88
C28	-0.2622(7)	0.4376(5)	0.7358(5)	1.66
C29	-0.1978(7)	0 6193(5)	0 9148(5)	1 75
C30	-0.3014(8)	0.6034(6)	0.9843(5)	2 73
C31	-0 2093(9)	0.5691(6)	1 0740(6)	2 77
C32	-0 1037(8)	0.5069(6)	1 0331(5)	2 42
C33	0.2920(8)	0.6733(6)	0.5941(6)	2.42
C34	0.3377(11)	0 6328(7)	0 5033(7)	4 36
C35	0.2527(9)	0 5413(7)	0 4866(7)	3 42
C36	0.1120/8	0.5413(7)	0.5213(5)	2.44
C30	-0 5019/0)	0.0050(7)	0.3213(3)	2.34
C3/	-0.3010(3)	0.9950(7)	0.7241(0)	5.03
C38	-0.4008(12)	1.0931(11)	0.70/0(9)	0.1/
039	-0.58/3(11)	1.1559(7)	0./343(/)	4.03
C40	-0.6957(9)	1.08/5(6)	0.6868(6)	2.95

Röntgenstrukturanalysen von 1a und 5^[32]: Einkristalle beider Verbindungen wurden auf einem Glasfaden befestigt, und durch Kleinste-Quadrate-Anpassung an die 2@-Werte von 49 Reflexen im Bereich $22^{\circ} \leq 2\Theta \leq 46^{\circ}$ für **1a** (25 Reflexe bei $20^{\circ} \leq 2\Theta \leq 26^{\circ}$ für 5) wurde die Gittermetrik bestimmt. Die Datensätze wurden linearen Zerfallskorrekturen unterworfen, da eine Intensitätsabnahme von 4.7% (8.4%) eintrat. Die gemessenen Intensitäten wurden einer Lorentz- und Polarisations- sowie einer semiempirischen Absorptionskorrektur [4-Scan, min. und max. Transmission 91.0% (73.7) und 99.8% (99.9)] unterzogen. Aus der systematischen Auslöschung ergeben sich für 1a die möglichen Raumgruppen P2₁ (Nr. 4) und $P2_1/m$ (Nr. 11); für 5 $P2_1/n$ (Nichtstandard Aufstellung von $P2_1/c$, Nr. 14). Die Positionen der Yttrium-Atome in 1a ergaben sich aus einer Patterson-Synthese^[33] in der Raumgruppe P2₁. Die folgenden Differenz-Fourier-Synthesen^[34] lieferten die Positionen aller Nichtwasserstoff-Atome. Die Wasserstoffatome konnten teilweise lokalisiert werden, wurden aber auf berechneten Positionen mit d_{C-H} = 95 pm und fixiertem $U_{\rm iso,H} = 0.05 \text{ Å}^{2[35]}$ dem Modell zugefügt. Eine Lösung der Struktur in der Raumgruppe $P2_1/m$ gelang nicht, obwohl das dimere Molekül fast Ci-Symmetrie aufweist. Die azentrische Raumgruppe wird auch durch die Statistik der normalisierten Strukturfaktoren bestätigt. Von den beiden möglichen enantiomeren Molekülen wurde dasjenige ausgewählt, dessen Positionsparameter bei der Least-Squares-Verfeinerung den besseren R-Faktor ergab. Die Strukturlösung für 5 erfolgte wie bei 1a durch Patterson- und Differenz-Fourier-Synthesen. Die Wasserstoff-Atome konnten nach anisotroper Verfeinerung der Nichtwasserstoff-Atome lokalisiert werden und wurden isotrop verfeinert.

Tab. 4. Atomkoordinaten und äquivalente isotrope Temperaturfaktoren $[Å^2]$ von 5 mit Standardabweichungen in Klammern

Atom	x/a	у/ъ	z/c	B _{eq}
ТЬ	0.19027(3)	0.15603(1)	0.39216(2)	1.83
C1	0.2739(7)	0.0699(1)	0.4022(4)	1.94
C2	0.2090(6)	0.0793(1)	0.5249(4)	1.99
С3	0.3631(6)	0.1063(1)	0.6166(4)	1.90
C4	0.5220(7)	0.1141(1)	0.5503(4)	2.30
C5	0.4675(6)	0.0918(1)	0.4191(4)	2.27
C6	0.1672(7)	0.0380(1)	0.2848(4)	2.37
C7	0.2404(10)	-0.0086(2)	0.3356(6)	3.45
C8	-0.0730(8)	0.0397(2)	0.2522(6)	3.50
C9	0.2285(12)	0.0476(2)	0.1498(5)	4.02
C10	0.3673(7)	0.1208(2)	0.7669(4)	2.59
C11	0.4796(11)	0.1648(2)	0.8044(6)	3.95
C12	0.4914(12)	0.0868(2)	0.8730(5)	4.14
C13	0.1450(11)	0.1240(3)	0.7813(7)	4.58
C14	-0.1725(9)	0.1690(2)	0.2190(7)	4.19
C15	-0.0312(10)	0.1713(2)	0.1398(5)	4.04
C16	0.1622(10)	0.1916(2)	0.1540(6)	4.18
C17	0.2921(8)	0.2193(2)	0.2553(7)	4.25
C18	0.2890(10)	0.2362(2)	0.3869(7)	4.40
C19	0.1480(12)	0.2338(2)	0.4692(6)	4.36
C20	-0.0490(12)	0.2129(2)	0.4530(7)	4.83
C21	-0.1782(9)	0.1858(2)	0.3517(7)	4.43

* Herrn Professor Ulrich Wannagat zum 70. Geburtstag gewidmet.

¹¹ 72. Mitteilung: R. Taube, H. Windisch, F. H. Görlitz, H. Schumann, J. Organomet. Chem., im Druck.

 [2] F. Mares, K. O. Hodgson, A. Streitwieser, J. Organomet. Chem. 1970, 24, C68-C70.

 ^[3] K. O. Hodgson, F. Mares, D. F. Starks, A. Streitwieser, J. Am. Chem. Soc. 1973, 95, 8650-8658.

^[4] A. Westerhof, H. J. de Liefde Meijer, J. Organomet. Chem. 1976, 116, 319-322.

^[5] K. O. Hodgson, K. N. Raymond, *Inorg. Chem.* 1972, 11, 3030-3035.

^[6] Q. Shen, W. Chen, Y. Jin, *Pure Appl. Chem.* **1988**, 60, 1251-1256.

912

- H. Schumann, J. Winterfeld, R. D. Köhn, L. Esser, J. Sun, A. Dietrich
- ^[7] J. D. Jammerson, A. P. Masino, J. Takats, J. Organomet. Chem. 1974, 65, C33-C36.
- ^[8] K. Wen, Z. Jin, W. Chen, J. Chem. Soc., Chem. Commun. 1991, 680-681.
- ⁽⁹⁾ P. Bruin, M. Booij, J. H. Teuben, A. Oskam, J. Organomet. Chem. **1988**, 350, 17-23.
- ^[10] M. Booij, N. H. Kiers, H. J. Heeres, J. H. Teuben, J. Organomet. *Chem.* **1989**, *364*, 79 – 86. ^[11] H. Schumann, C. Janiak, R. D. Köhn, J. Loebel, A. Dietrich, *J.*
- Organomet. Chem. 1989, 365, 137-150. ^[12] H. Schumann, R. D. Köhn, F. W. Reier, A. Dietrich, J. Pickardt,
- Organomet. 1989, 8, 1388-1392.
- ^[13] H. Schumann, J. Sun, A. Dietrich, Monatsh. Chem. 1990, 121, 747 - 753.
- ^[14] A. L. Wayda, Organomet. 1983, 2, 565-566.
- ^[15] K. O. Hodgson, K. N. Raymond, Inorg. Chem. 1972, 11, 171-175
- ^[16] K. Mashima, H. Takaya, Tetrahedron Lett. 1989, 30, 3697-3700.
- ^[17] A. Greco, G. Bertolini, S. Cesca, Inorg. Chim. Acta 1977, 21, 245 - 250.
- ^[18] A. L. Wayda, R. D. Rogers, *Organomet.* **1985**, *4*, 1440–1444. ^[19] C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge Na-
- tional Laboratory Tennessee, U.S.A. (1976). ^[20] W. J. Evans, R. Dominguez, T. P. Hanusa, Organomet. 1986, 5,
- 1291 1296^[21] W. J. Evans, M. A. Hozbor, S. G. Bott, G. H. Robinson, J. L.
- Atwood, Inorg. Chem. 1988, 27, 1990-1993. ^[22] H. Schumann, F. H. Görlitz, F. E. Hahn, J. Pickardt, C. Qian,
- Z. Xie, Z. Anorg. Allg. Chem. 1992, 609, 131-138.

- ^[23] H. Schumann, J. Loebel, J. Pickardt, C. Qian, Z. Xie, Organomet. **1991**, *10*, 215 – 219.
- ^[24] J. Holton, M. F. Lappert, G. G. H. Ballard, R. Pearce, J. L. Atwood, W. E. Hunter, J. Chem. Soc., Dalton Trans. 1979, 54-61.
- ^[25] W. J. Evans, J. H. Meadows, W. E. Hunter, J. L. Atwood, Organomet. 1983, 2, 1252-1254. ^[26] W. J. Evans, J. H. Meadows, W. E. Hunter, J. L. Atwood, J.
- Am. Chem. Soc. 1984, 106, 1291–1300.
- ^[27] W. J. Evans, J. H. Meadows, A. L. Wayda, W. E. Hunter, J. L. Atwood, J. Am. Chem. Soc. 1982, 104, 2008-2014.
- ^[28] R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751-767.
 ^[29] W. J. Evans, J. M. Olofson, J. W. Ziller, Inorg. Chem. 1989, 28, 4308 - 4309
- ^[30] T. V. Lubben, P. T. Wolczanski, G. D. van Dyne, Organomet. 1984, 3, 977-983.
- ^[31] R. Riemschneider, R. Mehring, Monatsh. Chem. 1959, 90, 568 - 572
- ^[32] Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56912, der Autoren und des Zeitschriftenzitats angefordert werden.
- ^[33] G. M. Sheldrick, SHELX-86, Program for Crystal Structure Solution, Universität Göttingen, 1986.
- ^[34] G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determinations, Univ. of Cambridge, 1976. ^[35] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys.
- **1965**, *42*, 3175 3178.

[389/92]